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Abstract 
We describe an automated method to assess children’s oral 
reading using a prosodic synthesis model trained on multiple 
adults’ speech.  We evaluate it against a previous method that 
correlated the prosodic contours of children’s oral reading 
against adult narrations of the same sentences. We compare 
how well the two methods predict fluency and comprehension 
test scores and gains of 55 children ages 7-10 who used 
Project LISTEN’s Reading Tutor.  The new method does 
better on both tasks without requiring an adult narration of 
every sentence. 
Index Terms: education, oral reading, children, prosody, 
speech synthesis, intelligent tutoring system  

1. Introduction 
Assessment of children’s oral reading fluency is important in 
education for multiple reasons [1].  Oral reading fluency is the 
ability to “read text with speed, accuracy, and proper 
expression” [2].  Educators measure oral reading fluency in 
two ways.  Oral reading rate is the number of words read 
correctly per minute.  This measure is quick and easy to 
administer, and correlates strongly with children’s 
comprehension test scores [3]. However, it ignores 
expressiveness.  Fluency rubrics [4] rate reading more 
subjectively and qualitatively against specified criteria.  

Previous work on automated assessment of oral reading 
has focused on oral reading rate [5] or closely related variants 
such as average inter-word latency [6, 7] or word reading time 
[8].  In contrast, automatic measurement of oral reading 
expressiveness would make it possible to assess reading more 
richly and informatively than oral reading rate, yet more 
precisely and consistently than human-graded rubrics. 

Newer work [1] evaluated oral reading expressiveness by 
measuring how well the prosodic contours of children’s 
reading correlate in pitch, intensity, pauses, and word reading 
times with adult narrations of the same sentences.  This 
approach was based on the insight that the more expressive a 
child’s reading of a text, the more the prosody tends to 
resemble fluent adult reading of the same text [9-11]. 

In this paper we tackle the same problem but eliminate the 
need for an adult narration of each sentence.  Instead, we adapt 
prior work [12] that trains models of duration, F0 and intensity 
in order to map text to prosody.  We train similar models, but 
instead of using them to prescribe a specific prosodic contour, 
we use them to evaluate children’s prosody.  We train our 
model on multiple adult voices so it is not specific to the 
idiosyncrasies of one speaker.  This model also lets us rate 
readings of new text unnarrated by adults. 

What is better for rating children’s oral reading prosody – 
comparison to fluent adult narrations of the same sentences, or 
a generalized normative model trained on those narrations?  
To address this question, this paper evaluates both methods. 

Our data consist of children’s oral reading assisted and 
recorded by Project LISTEN’s Reading Tutor, which listens to 
children read aloud, and helps them learn to read [13].  The 
Reading Tutor and the child take turns choosing what to read 
from a collection of several hundred stories with recorded 
adult narrations.  The Reading Tutor displays text 
incrementally, adding a sentence at a time.  It uses the Sphinx 
automatic speech recognizer (ASR) [14] to track the child’s 
position in the text [15].  It responds with spoken and 
graphical feedback when the ASR detects hesitations or 
miscues, or when the child clicks for help on hard words or 
sentences.  The spoken feedback uses a forced-aligned 
recording of each sentence by an adult narrator. 

The rest of the paper is organized as follows.  Section 2 
describes the new approach.  Section 3 evaluates it against the 
old approach.  Section 4 concludes by summarizing 
contributions and relating them to prior and future work. 

2. Approach 
Prosody can be quantified by duration, pitch, and intensity.  
This paper focuses on duration, because we found duration-
based features strongest in predicting paper tests of fluency 
and comprehension [1], and in detecting prosody improvement 
[16]. 

2.1. Duration model for synthesis 

Several duration models, either rule-based or statistical, have 
been shown to work well in speech synthesis.  Most well-
known among the rule-based methods is Klatt’s method [17], 
which uses rules to model the average duration of a phone 
given its surrounding context.  Examples of good machine 
learning methods for prosody models are decision trees [18, 
19] and the sum-of-products model [20-22].  We had tens of 
thousands of adult utterances as training data, so we decided to 
train a decision tree model of phone duration, using tools in 
the Festival Speech Synthesis System [23].  Given recorded, 
transcribed utterances, the trainer computes a set of features 
for each phone and builds a decision tree using these features.  
Rather than simply using all features, the trainer uses a greedy 
stepwise approach to select which set of features to use. Each 
step tests the features to find the best feature to add next.  
Given a new text to synthesize, the model generates each 
phone’s duration as follows.  First it computes the selected 
features of the phone and its surrounding context, up to the 
utterance level, to place the phone in the appropriate leaf node. 
It then uses the mean duration of all training data instances 
placed into that leaf node as the synthesized duration for the 
phone.  We now describe the features we compute. 

2.2. Features in duration model 

Our duration model uses features of the phone itself, as well as 
contextual features about the syllable structure and the word 
that the phone belongs to.  Phone level features include the 

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

769



phone name, its position in the syllable, whether it occurs 
before or after the syllable’s nucleus, and whether it’s a 
consonant or a vowel. If it’s a vowel, we compute its length 
(short, long, diphthong or schwa), its height (high, mid, or 
low), its frontness (front, mid, or back), and its roundedness 
(rounded or unrounded).  If it is a consonant, we include its 
type (stop, fricative, affricative, nasal, lateral, or approximant), 
its place of articulation (labial, alveolar, palatal, labio-dental, 
dental, velar, or glottal) and its voicing (voiced or unvoiced).  
To account for coarticulation effects, we also compute some of 
these features for the previous two phones and the next two 
phones.  Syllable level features include number of phones in 
onset and coda, position in word, distance to end of the 
phrase, number of syllables from previous and next phrase 
breaks, number of stressed syllables from previous and next 
phrase breaks, and the lexical stress of the syllable.  At the 
word level, we use the context-sensitive part of speech of the 
word and the number of syllables in the word. 

2.3. Adapting synthesis model into normative model  

So far we have simply described common approaches in 
prosodic synthesis.  The novelty of our method is in adapting 
the synthesis model into a normative model to rate children’s 
oral reading.  To this end, we train the model similarly to what 
is done for synthesis, but use it differently.  Instead of using 
the mean duration at each leaf node of the decision tree to 
prescribe a duration for the phone being synthesized, we use 
the mean and the standard deviation of all the instances at the 
leaf node to compute the likelihood of the phone’s actual 
duration. 

Figure 1 depicts a fragment of a simple (made-up) tree 
covering the two instances of the phone /IH/ in speaking the 
sentence This is an example. At the “Syllable initial?” node, 
the /IH/ in This follows the left branch because it occurs in 
mid-syllable.  Conversely, the /IH/ in is follows the right 
branch.  Each phone contributes to the training instances used 
to estimate the mean and standard deviation at its leaf node. 

 
Figure 1:  Decision tree fragment with two leaf nodes 

Given a child’s utterance and a trained decision tree, we 
evaluated different formulas for how to aggregate phone-level 
ratings into an overall rating of the utterance.  In the following 
equations, u is the utterance to rate, containing n phones; the 
pi’s are phones in that utterance; di is the actual duration 
produced by the child for phone pi; and μi and σi are the mean 
and standard deviation of the training data for that phone. 
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where sd  and  sμ are the standard deviations of the 
actual durations and mean durations, respectively, of 
the phones in this utterance. 

6. Pearson correlation of word durations 
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where Dj and Mj represent the actual and prescribed 
durations of wordj, respectively, and Ds and s  are 
their standard deviations 
 

7. Weighted average of word-level correlations 
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Measures 1-5 combine the ratings of individual phones 

(including silences) directly into an utterance level rating. 
Measure 1 (average log likelihood) indicates how close the 
children’s durations are to the model, and assumes that all the 
phones in the utterance are independent.  It takes into account 
both the means and the standard deviations that the model 
computes from the training data.  Measure 2 (z-score) also 
uses the standard deviations as well as the means, specifically 
to normalize the distance of an instance from the mean. 

Measures 3-5 consider only the mean durations, measuring 
how far the children’s durations are from these means.  
Measures 3 (root mean squared error) and 4 (mean absolute 
error) consider only the difference between the model’s mean 
durations and the children’s actual durations.  Measure 5 
(correlation of phone durations) looks in addition at whether 
the two sequences follow similar contours. 

Measures 6 and 7 first compute ratings at the word level, 
and then combine these word level ratings into utterance level 
ratings.  For Measure 6, we first compute each word’s actual 
and prescribed durations by adding up the durations of its 
phones (including the preceding silence) – respectively, the 
actual durations of the phones spoken by the child, and the 
durations prescribed by the synthesis model (namely, the mean 
durations of the training examples for the corresponding leaf 
nodes).  We then compute the correlation between the actual 
and prescribed durations of the words in the utterance.  For 
Measure 7, we first correlate the actual and prescribed 
durations of the phones in each word, obtaining one 
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correlation for each word.  We then average these correlations, 
weighted by the number of phones in each word. 

When we compute these ratings, we must handle cases 
where a child misread, skipped, or repeated words.  We 
consider only the child’s first attempt to read a word, and 
exclude words that the child skipped, or that the tutor assisted 
before the child could attempt them.  We count the number of 
remaining words in each utterance, and use the percentage of 
included words to weight the rating of each utterance when we 
combine the ratings of all the utterances.  This weighting 
scheme gives higher weights to sentences with fuller 
observations of the child’s performance. 

3. Evaluation 
Ideally we would evaluate our rating method directly against a 
gold standard measure for the prosody of each read sentence.  
The obvious candidate for such a measure is a human-graded 
rubric to evaluate oral reading fluency. One such rubric [24] 
rates expression, phrasing, smoothness, and pace on separate 
4-point scales.  However, these labor-intensive ratings would 
cost too much to obtain for large amounts of data.  Moreover, 
when two members of Project LISTEN used the rubric to rate 
a sample of 200 read sentences, their inter-rater reliability was 
low, especially at the level of individual sentences [1].  
(Perhaps reading professionals would agree more.) 

In the absence of a reliable gold standard, we evaluated 
our rating method indirectly by how well the trained model 
predicts students’ performance outside the Reading Tutor on 
highly reliable, psychometrically validated tests of fluency and 
reading comprehension, individually administered at the 
beginning (pretest) and end (posttest) of the semester. 

We combined the utterance-level ratings for each student 
as described in Section 2.3, to get 7 different ratings for each 
student.  We then used linear regression to predict students’ 
test scores, with these ratings as predictors. 

We compared our normative model against a strong 
baseline – our previous rating method [1] that, when combined 
with pretest scores, predicted fluency posttest scores with 
adjusted R2 > 0.9  It rated the child’s prosodic contour for a 
sentence by correlating it against the adult narration of the 
same sentence.  To compare methods more fairly, we limited 
the baseline to duration-based features, including child-adult 
correlations for word production, latency, and duration, both 
raw and after normalizing for word length.  Here production is 
the time to pronounce the word; latency is the time between 
successive text words, including “false starts, sounding out, 
repetitions, and other insertions, whether spoken or silent” [6, 
7]; and word duration is the sum of production and latency. 

In our experiments, we trained the decision tree on a 
corpus of adult narrated speech data used in the Reading 
Tutor.  The corpus consisted of 24,816 sentences, with 
811,418 phones, that were read by 20 narrators.  Each story 
was narrated by a single narrator, so in the baseline method, 
each correlation is computed using a single adult voice; 
despite individual variation, adults’ prosodic contours for a 
given text correlate very strongly, even across geographical 
regions (Paula Schwanenflugel, personal communication, 
10/18/2008). Our children’s data came from 235 students, who 
spoke 399,285 utterances comprising 8,320,114 phones.  We 
used SPSS’s linear regression function, with either the 
“stepwise” or “enter” option for selecting features.  The enter 
option simply includes all the features in the regression, 
whereas the bidirectional stepwise option inserts or removes 
one feature at each step based on an F-test.  This greedy 

technique sometimes does worse, so we tried both ways and 
reported the higher adjusted R2 of the two. 

 Table 1 uses adjusted R2 to measure how accurately the 
two types of ratings predict students’ test scores.  The 
correlational method uses features computed by correlating the 
child’s and adult narrator’s prosodic contour for each 
sentence. The normative method uses ratings output by the 
synthesis model trained on the same set of sentences. 

Table 1. Adjusted R2 for competing methods 

Dependent variable Normative  Correlational  
Posttest fluency 0.572 0.565 

Posttest comprehension 0.369 0.362 
 

As Table 1 shows, the normative method slightly 
surpassed the baseline on both tasks.   Although the difference 
is small, the new approach is qualitatively superior in that it 
eliminates the requirement for an adult to narrate each 
sentence in order for the computer to rate it.  The opposite 
result would have suggested that the phone features employed 
by the synthesis model failed to capture enough information 
about the sentence text to rate its prosody as well as comparing 
it to the adult narration. Evidently the smoothness added by 
generalizing over multiple narrators and sentences more than 
compensates for the information lost by ignoring sentence 
details unrepresented by the phone features in the synthesis 
model. 

Pretest scores are typically strong predictors of posttest 
scores, so we also tested whether normative ratings plus 
pretest score predicted posttest score better than pretest score 
alone.  Table 2 shows that pretest scores achieved high 
adjusted R2, but adding normative ratings accounted for about 
0.01 additional variance. 

Table 2. Pretest with vs. without normative ratings 

Dependent variable Pretest Normative + pretest 
Posttest fluency 0.852 0.866 

Posttest comprehension 0.792 0.802 
 
We noticed that the first (and sometimes only) feature selected 
by stepwise regression was always average log likelihood for 
the utterance (Measure 1) – one of the only two measures to 
incorporate the standard deviation of phone durations.  This 
finding demonstrates the value of exploiting this information. 

4. Conclusions 
This paper introduces and evaluates a method to take a 
prosodic synthesis model trained on fluent adult narrations and 
adapt it to rate children’s oral reading prosody.  We first show 
how to extend the trained synthesis model to rate each phone. 
We then investigate seven different formulas to combine 
phone ratings to rate utterances. Two of these formulas exploit 
standard deviation statistics readily computed from the data 
collected for each leaf of the decision tree as a byproduct of 
training it, but unused by the synthesis model.  The method 
trains normative models of oral reading prosody that 
generalize to sentences without adult narrations. 

We evaluate this approach against a previous approach [1] 
that required an adult narration of each sentence in order to 
rate how well the child read it.  We compare the two 
approaches by their ability to predict students’ scores on 
fluency and comprehension tests.  The new approach beats the 
old one on both tasks.  Although the difference is small, the 
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fact that the normative method out-predicted the correlational 
method means it gained more by generalizing across sentences 
than it lost by ignoring the sentence details it did not capture. 

Our method could be used to rate prosody in other 
contexts, such as language learning or public speaking.  Given 
a corpus of transcribed speech with exemplary prosody, one 
can train a decision tree for each prosodic attribute (duration, 
pitch, and intensity) and then adapt the trees just as we did to 
assess the corresponding prosodic attributes of other voices. 

Our method leaves room for further improvement.  For 
example, we base our decision tree estimates (mean and 
standard deviation) solely on the statistics at the leaf level.  
Although we had a rule to stop splitting the tree whenever 
there are fewer than 20 training instances, our estimates might 
still suffer from data sparseness.  A principled approach to 
remedy this problem is deleted interpolation [25], which 
smoothes sparse estimates of leaf-level probabilities, 
conditioned on many features of the phone, by combining 
them with better-estimated but less specific probabilities at 
higher levels in the tree.  Besides implementing deleted 
interpolation, future work includes training similar models for 
pitch and intensity, in order to rate more aspects of children’s 
oral reading prosody. 
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